

qPCRBIO Probe One-Step Hi-ROX

Product description:

PCR Biosystems qPCRBIO Probe One-Step Kit uses the latest developments in reverse transcriptase technology and buffer chemistry for efficient cDNA synthesis and PCR in a single tube.

Our modified MMLV reverse transcriptase (RTase) is both thermostable and extremely active. The enzyme is blended with RNase inhibitor preventing degradation of RNA by contaminating RNase. The RTase is not inhibited by ribosomal and transfer RNAs, total RNA is an ideal substrate.

PCR Biosystems real-time PCR probe mixes have been designed for use on a wide range of probe technologies including Taqman®, Molecular Beacons® and Scorpion probes®.

qPCRBIO Probe One-Step Mix uses proprietary small molecular inhibitor technology that prevents formation of primer-dimers to improve reaction sensitivity and specificity.

High-throughput screening has resulted in a buffer system that allows efficient amplification from GC-rich and AT-rich templates, under fast and standard cycling conditions.

Component	100 reactions	300 reactions
2x qPCRBIO Probe 1-step	1x 1ml	3x 1ml
20x RTase with RNase inhibitor	1x 200µl	3x 200µl

Shipping and Storage

On arrival the kit should be stored at -20°C. Avoid prolonged exposure to light. If stored correctly the kit will retain full activity for 12 months. The kit can be stored at 4°C for 1 month. The kit can go through 30 freeze/thaw cycles with no loss of activity.

Limitations of product use

The product may be used only for in vitro research purposes.

Technical support

For technical support and troubleshooting please email technical@pcrbio.com the following information:

Amplicon size Reaction setup Cycling conditions Screen grabs of amplification traces and melting profile

Instrument compatibility

Manufacturer	Instrument	Lo-ROX	Hi-ROX
Analytica Jena	qTower	Yes	Yes
Applied Biosystems	7500, 7500 FAST, Viia7™	Yes	No
Applied Biosystems	7000, 7300,7700,7900, 7900HT, 7900HT FAST, StepOne™, StepOne™ Plus	No	Yes
Bio-Rad®	iCycler®, MyiQ®, iQ ™5, Opticon™, Opticon™2, Chromo4™, MiniOpticon™, CFX96™, CFX384™	Yes	No
Cepheid®	Smartcycler®	Yes	Yes
Eppendorf	Mastercycler® ep realplex, Mastercycler® realplex 2S	Yes	Yes
Illumina®	Eco™	Yes	Yes
Qiagen/Corbett	Rotor-Gene™ 3000, 6000, Q	Yes	Yes
Roche Applied Science	Lightcycler®480, Lightcycler®Nano	Yes	Yes
Stratagene (Agilent)	MX 4000P°, MX 3000P°, MX 3005P°	Yes	No
Takara	Cycler Dice®	Yes	Yes
Techne	Quantica®	Yes	Yes

Primer design: For efficient amplification under fast cycling conditions we recommend amplicon lengths between 80bp and 200bp. With all manufacturers master mixes the shorter the amplicon length the faster the reaction can be cycled. Amplicon lengths should not exceed 400bp. Primers should have a predicted melting temperature of around 60°C, using default Primer 3 settings (http://frodo.wi.mit.edu/primer3/). For taqman probes choose probe close to 5' primer, avoid terminal guanosine residues.

Reaction setup

1. Before starting, briefly vortex 2x qPCRBIO Probe One-Step Mix

e, we recommend also setting up a no-RTase control:

Reagent 20µl reaction		Final concentration	Notes
2x qPCRBIO Probe One-Step Mix	10µl	1x	
Forward primer (10µM)	0.8µl	400nM	See above for optimal
Reverse primer (10µM)	0.8µl	400nM	primer design
Probe (10µM)	0.4µl	200nM	
20x RTase	1.0-2.0µl	1x or 2x	1.0µl is recommended 2.0µl will improve Ct but may increase primer dimers
Template RNA	lpg to lµg total RNA >0.01pg mRNA	variable	

3. Program the instrument using following conditions, acquiring data on the appropriate channel:

Cycles	Temperature	Time	Notes
1	45°C to 55°C	10min	Reverse transcription, 45°C is recommended for most applications, 55°C should be used only when amplicon contains regions of high secondary structure
1	95°C	2min	Polymerase activation, 2 minutes
40	95°C 60°C to 65°C	5 seconds 20-30 seconds	Denaturation Anneal/Extension, do not exceed 30 seconds, do not use temperatures below 60°C
Melt analysis	Refer to instru	ment instructions	Optional melt profile analysis, available for hybridisation probes only